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Abstract

In order to assist humans with dangerous or menial tasks, autonomous
robots will need to act under significant time and energy constraints. At
task time, the amount of effort a robot spends planning directly detracts
from its total performance. Manipulation tasks, however, present chal-
lenges to efficient motion planning. They are often tightly coupled – while
moving an object can be decomposed into steps (reach, grasp, transfer,
release), each step requires choices (e.g. which grasp), and committing to
a bad choice can render subsequent steps difficult; this encourages longer
planning horizons. However, an articulated robot situated within a geo-
metrically complex and dynamic environment induces a high-dimensional
configuration space in which it is expensive to test for valid paths. And
since multi-step plans require paths in changing valid subsets of configu-
ration space, it is difficult to reuse computation across steps or maintain
caches between tasks.

We focus on a motion planning approach for coupled multi-step manip-
ulation problems that is efficient over the entire task (including both plan-
ning and execution). We contend that the problem’s cost structure favors
explicit handling of both graph representation and task effort optimiza-
tion, and propose a graph search algorithm which captures these insights
given a model of planning effort. We offer methods for roadmap construc-
tion which seek to balance completeness with efficiency at task time. We
then unify previous work examining configuration space structure of re-
lated problems (e.g. multi-step manipulation) into a general set-theoretic
formulation which suggests a planning effort model to be exploited by our
roadmap search algorithm, yielding a motion planner which efficiently
reuses computation between queries. We also present a task planner that
maps a task decomposition into queries to our motion planner. Our in-
sights yield complementary components which, taken together, constitute
an efficient approach to planning manipulation tasks.

This thesis proposes a heavy emphasis on experimental evaluation of
the individual constituent algorithms and the approach as a whole. We
will compare against state-of-the-art task and motion planners on multiple
robotic platforms, in applications from home table clearing to remote
disaster response. We also provide open-source implementations of our
algorithms.
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1
Introduction

The steady advancement of technology has automated an increas-
ing variety of menial or dangerous tasks previously performed by
humans. Computer algorithms now trade our stocks, route our tele-
phone calls and packages, and fly our planes, while simple machines
clean our clothes and wash our dishes.

More complex tasks require complex robots with many degrees
of freedom. Manipulation tasks, in particular, present challenges in
many areas including perception, symbolic reasoning, and motion
planning. Successful applications have so far been largely confined
to manufacturing domains whose prescribed and structured environ-
ments allow these challenges to be overcome.

In contrast, consider the manipulation tasks in Figure 1.1. In the
first application, the Herb home robot must retrieve a frozen meal
from a countertop and transfer it into a microwave oven. In the sec-
ond, the Chimp distaster response robot must clear large pieces
of debris from a blocked doorway in the recent DARPA Robotics
Challenge competition. These multi-step manipulation tasks require
finding motion plans in high-dimensional, dynamic, semi-structured
spaces under significant resource constraints (e.g. time or energy).
State-of-the-art approaches can not yet handle these planning prob-
lems quickly and reliably.

(a) The Herb assistance robot moves a
frozen meal into a microwave oven.

(b) The Chimp distaster response robot
clears debris from a blocked doorway.

Figure 1.1: This thesis addresses multi-
step motion planning for manipulation
tasks.

This thesis proposes an efficient motion planning approach well-
suited to articulated robots performing recurring multi-step
manipulation tasks in dynamic, semi-structured environments.

To address this problem in depth, this thesis focuses on efficient
kinematic planning approaches to coupled manipulation tasks con-
sisting of several (2-5) steps as formuated in Chapter 2. We don’t
consider uncertainty or feedback to symbolic planners, and we focus
primarily on sequential planning and execution. We consider our
approach complementary to hybrid and interleaved planners, as well
as approaches which learn heuristics.
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Challenges Insights

Capturing Planning/Execution Tradeoff Minimize Ensemble Effort on Explicit Graphs
Incongruent Sub-Problems Impede Reuse Identify and Exploit Multi-Set Structure

Coupled Steps Require Long-Horizon Plans Comprehensive Sub-Problem Planning

Table 1.1: Challenges and Insights
Challenges to Efficient Manipulation Planning

There are three principal challenges inherent in such human-scale
manipulation tasks (Table 1.1) which render the planning problem
difficult. We survey them here.

Challenge 1: Capturing the Planning vs. Execution Tradeoff

Manipulation robots must be resource-efficient. If a home robot takes
thirty minutes to clear a table, or a disaster response robot exhausts
its battery ten minutes into its mission, these robots will not see
widespread use. A robot expends two types of effort. First, it must
allocate computation to plan a sequence of motions that will acheive
the task. Second, it must execute these motions using its actuators.
Typically, there is a tradeoff between these two; spending more effort
planning produces solutions that are cheaper to execute.

Consider the spectrum of planning domains in Figure 1.2. In many
types of problems, such as planetary exploration, execution resources
are most scarce, and therefore the optimality of the solution is most
imporant. On the other hand, in domains such as automated theorem
proving, the quality of the solution is less important; planners are
instead designed to find a feasible solution quickly.

In manipulation tasks, both types of efficiency are equally impor-
tant; metrics such as time or energy use are only meaningful when
applied across the entire task (from assignment to completion). In

Figure 1.2: In many planning domains,
either planning effort or execution
effort is most important to minimize.
For manipulation tasks, the Herb and
Chimp incur comparable cost (e.g.
time or energy) during planning and
execution. It is therefore important
for planning approaches to accurately
model and reason about this tradeoff.

(a) Planetary exploration:
cost = execution effort

Planning Effort

Execution Effort

Planning Effort

Execution Effort

(b) Manipulation tasks on the Herb and and Chimp robots:
cost = planning effort + execution effort

Axioms:
- Axiom 1: f (1, x) = x
- Axiom 2: u(x, y) = u(y, x)
- Axiom 3: u(1, a) = a

Goal Theorem:
- u(a, f (a, b) = f (a, b)

Proof:

Lemma 1:
- u(z, f (a, z)) = f (a, z)
= u( f (a, z), z) by Axiom 2
= u( f (a, z), f (1, z)) by Axiom 1

Theorem 1:
. . .

(c) Automated theorem proving:
cost = planning effort
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(a) Fixed worlds
(multi-query)

(b) A multi-step manipulation task. (c) Random worlds
(single-query)

Figure 1.3: The structure of multi-step
manipulation tasks requires multiple
queries, each in different but related
subsets of configuration space.

fact, measured in either time or energy, robots tend to expend com-
parable effort on each. For example, at the DRC Trials, the CHIMP
robot spent an average of 140.6 s planning, and 373.6 s executing
those plans (with very slow execution speeds for safety). Therefore,
motion planners for manipulation tasks must be able to reason about
the important tradeoff between these two types of effort.

Challenge 2: Incongruent Sub-Problems Impede Reuse

Because planning effort is such an important factor in manipulation
task efficiency, it’s important to consider approaches which minimize
computation across multiple planning queries. This is especially im-
portant in high-dimensional spaces, where planning costs are domi-
nated by validity checking – e.g. checking whether configurations are
free from collision. However, the structure of manipulation problems
makes it difficult to apply common approaches.

Consider the motion planning problems in Figure 1.3. In the first
case, an industrial robot repeatedly addresses the same scene; multi-
query approaches such as the Probabalistic RoadMap1 have proven 1 L. Kavraki, P. Svestka, J.-C. Latombe,

and M. Overmars. Probabilistic
roadmaps for path planning in high-
dimensional configuration spaces.
Robotics and Automation, IEEE Transac-
tions on, 12(4):566–580, Aug. 1996

effective at facilitating reuse in such cases. However, autonomous
manipulation robots perform tasks in dynamic, semi-structured en-
vironments. Further, during each step of a manipulation plan, the
valid subset of configuration space changes as objects are grasped
and moved, making it difficult to apply roadmap approaches.

At the other extreme, a robot addressing a set of different ran-
dom worlds are best served by single-query approaches which build a
graph structure “from scratch” for each problem they solve. Apply-
ing such approaches to multi-step manipulation tasks leads to ineffi-
ciency in planning as computation is not reused between queries.

Manipulation sub-problems do have structure. Since they occupy
this middle ground between fixed and random environments, it’s
essential that planning approaches find a way to reuse computation
effectively between inconguent sub-problems.
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qstart

Sgrasp Sdrop

qend

S1

(mug on table)
S2

(mug in hand)
S3

(mug in bin)

Figure 1.4: Manipulation sub-problems
within incongruous free subsets of
configuration space. Herb plans for
a simple manipulation task to grasp,
transfer, and drop a mug from a table
into a bin before returning to an end
configuration. Each sub-problem
requires a path in a distinct free subset
of configuration space.

Challenge 3: Coupled Steps Require Long-Horizon Plans

Not only does the structure of manipulation tasks impede planner
reuse between sub-problems, but it also necessitates long-horizon
plans to ensure robustness. For example, consider sequentially plan-
ning for the task in Figure 1.3. The interfaces between these three
steps lie on continuous manifolds. A choice made by an early plan-
ning step – e.g. what arm configuration or object grasp to use – often
renders a subsequent part either difficult to plan, costly to execute, or
impossible altogether. We say that such sub-problems are coupled.

We therefore might endeavor to plan for all steps simultaneously
before execution. Indeed, many motion planners are designed to take
as input start and goal sets. We might hope that we can delegate each
task sub-problem to separate such planner instances, and provide
each with specifications for their corresponding root sets. However,
a customary planning request takes an any-to-any form (i.e. from any
start to any goal configuration). Clearly, without coordination, the
juxtaposed solution paths will not be continuous.

Key Insights to Our Approach

While these three challenges make efficient manipulation task plan-
ning a difficult problem, we identify three corresponding and com-
plementary key insights to address them. We apply our insights to
graph- and roadmap-based planners as summarized in Table 1.2.
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Ch. Algorithm Problem Representation Opt-Plan Multi-Set

A∗ Search [9] Graph Implicit No No

Weighted A∗ Search Graph Implicit Partial No

Experience Graphs [25] Graph Implicit Partial Partial

BUGSY [27] Graph Implicit Yes No

2.1 E8 Search Graph Explicit Yes No

Lazy PRM [2] C-space Roadmap (Explicit) No No

Dynamic Planner [12] C-space Roadmap (Explicit) No Partial

2.2 E8-PRM C-space Roadmap (Explicit) Yes No
2.4 Multi-Set PRM C-space Families Roadmap (Explicit) Yes Yes

2.6 Proteus Multi-Step Tasks Multi-Graph (Explicit) Yes Yes

Table 1.2: Comparison of algorithms.
The “Opt-Plan” column denotes plan-
ners which explicitly optimize an
objective which includes a planning
effort term. The “Multi-Set” column
denotes planners which reason about
common structure between related
problems.

Insight 1: Minimize Ensemble Effort on Explicit Graphs

Because the tradeoff between planning and execution effort is so
important for manipulation tasks, it is important to choose prob-
lem representations and design algorithms which accurately model
and exploit this structure. We make two contributions to this end as
described in Chapter 2.1.

First, while graph-based approaches have proven effective at solv-
ing many problems in high-dimensional spaces, we propose that the
planning effort model assumed by traditional search algorithms (e.g.
A*) may not be well-suited to motion planning problems for articu-
lated robots. In particular, we propose that explicit graph represen-
tations allow the planner to more accurately capture the significant
edge evaluation costs inherent in such problems.

Second, our planning approach explicitly optimizes for both plan-
ning and execution effort – what we call the task’s ensemble effort. We
submit that our approach handles this tradeoff more directly than
“anytime” planning approaches. We apply this reasoning to explicit
graphs with the E8 search algorithm which determines an effort al-
location between planning and execution in order to minimize total
task cost.

In order to solve planning problems in continous configuration
spaces, we borrow heavily from roadmap techniques for graph con-
struction. The application of our ensemble effort algorithm to such
roadmaps, the E8-PRM (Chapter 2.2), maintains efficiency through an
incremental densification approach motivated by approximating the
probabalistic spatial correlation of Cfree. We propose to show that this
planner can outperform state-of-the-art single-query motion planners
for several manipulation tasks.
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Insight 2: Identifying and Exploiting Multi-Set Structure

In order to address the important issue of planning computation
reuse between the incongruent sub-problems inherent in manipula-
tion tasks, we propose the multi-set planning formulation in Chap-
ter 2.3 which bridges the gap between single-query and multi-query
approaches. We explicitly represent the structure of such problems
through a family of subsets of the robot’s configuration space, as well
as set relations between them. We further demonstrate instances of
multi-set structure in many classes of manipulation problems, and
use the formulation to unify several instances of prior work aimed at
efficiently planning for such tasks.

Next, Chapter 2.4 shows how the multi-set formulation can be
used as a planning effort model when solving planning queries in
related subsets of configuration space. This planning model can then
be inserted directly into the E8-PRM to handle multi-step problems.
The resulting algorithm, the Multi-Set PRM, uses propositional logic
to represent the multi-set structure algorithmically.

Insight 3: Comprehensive Sub-Problem Planning

Our last insight addresses how to efficiently decompose a coupled
multi-step manipulation task into individual sub-problems. For
tightly coupled problems, it is especially important to plan for mul-
tiple possibilities. First, we introduce the Comprehensive Multi-Root
(CMR) planner objective (Chapter 2.5). In constrast to the traditional
any-to-any objective, CMR encourages a planner to discover paths
between multiple pairs of roots. We also show that this objective can
be applied greedily to traditional PRM planners yielding provably
superior algorithms for CMR problems.

Second, we introduce the Proteus task planner (Chapter 2.6)
which combines the three insights into a single planning approach.
The task planner automatically discovers the multi-set structure
in each task and instantiates a Multi-Set PRM to handle planning
queries for each sub-problem. It then performs root sampling within
each interface manifold and uses the CMR objective for each query to
efficiently search for a full task plan.

Evaluation

Because this thesis presents an integrated set of algorithms for multi-
step manipulation task planning, we endeavor to place significant
emphasis on empirical evaluation in order to verify the performance
of the proposed approach. See research question Q8 for more details
about the metrics, baseline approaches, and test platforms that will
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be used in these comparisons.
I refer the reader to Chapter 3 for a summary of the particular

research questions that I propose to answer. Chief among these ques-
tions are the effects of the insights above on task performance as
borne out by these experiments:

• The effect of the E8 algorithm’s planning vs. execution effort trade-
off parameter (λ) compared to weighted/anytime approaches.

• The effect of the E8-PRM’s batching strategy on its efficacy as a
single-query planner in high-dimensional planning problems.

• The performance of the Multi-Set PRM on problems with various
amounts of shared structure (from fully fixed to fully random
environments).

• The performance of the Proteus task planner compared to other
baseline planners that address multi-step tasks.

Summary of Contributions

In summary, I propose the following contributions:

• A set of insights into the structure of the multi-step manipulation
planning problem, including the multi-set and comprehensive
multi-root (CMR) formulations.

• The E8 graph search algorithm which explicitly minimizes both
planning and execution effort over explicit graphs.

• The E8-PRM, an application of E8 to C-space roadmaps.
• The Multi-Set PRM, an instantiation of the E8-PRM using the

multi-set formulation as a planning effort model.
• The Proteus task planner, a sequencing planner which submits

queries across steps to an instance of the Multi-Set PRM using the
CMR objective.

• The ompl_multiset package for the OMPL[34] sampling-based
planning framework containing implementations of the E8-PRM
and Multi-Set PRM algorithms.

• The or_proteus package for the OpenRAVE[6] simulation frame-
work which implements the Proteus task planner.

• An experimental evaluation of the above algorithms against state-
of-the-art baseline approaches.





2
Framework for Efficient Manipulation Task Planning

This chapter lays out our proposed approach to planning for cou-
pled manipulation tasks. The reader is directed to Figure 2.1 for an
overview. Our approach consists generally of decomposing the task
into multiple steps, each of which is solved by queries to an underly-
ing motion planner in the robot’s configuration space1. 1 T. Lozano-Pérez. Spatial planning: A

configuration space approach. Comput-
ers, IEEE Transactions on, C-32(2):108–
120, Feb. 1983

We suggest that a reasonable decomposition of a task into steps
should be guided by changes to either the valid subset of the robot’s
configuration space (e.g. at grasp and release points of manipulated
objects) or the set of constraints active on the robot’s configuration.
This facilitates simpler calls to each motion planner, and also allows
separate planners with different capabilities (e.g. constrained plan-
ners) to be used for each step.

Outline. Loosely, the sections in this chapter are layed out as fol-
lows. Sections 2.1 and 2.2 describe our approach to planning within
each step, on graphs and roadmaps respectively. Next, Sections 2.3
and 2.4 identify and exploit structure between steps in order to reuse
planning computation across queries. Lastly, Sections 2.5 and 2.6
discuss how to specify queries across all steps in a higher-level se-
quencing task planner.
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(a) Start config (b) Step 1 in S1 (c) Step 2 in S2 (d) Step 3 in S3 (e) End config

Task Planner:
Clear the table

Step 1:
Transit to

grasp
Grasp
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Figure 2.1: Diagram of multi-step planning framework. This thesis focuses on efficient geometric planning for manipu-
lation tasks (the lower levels here). Task planning can be performed by an autonomous symbolic planner, or guided by
a human operator.

Figure 2.1: x
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2.1 Quickly Searching Explicit Expensive Graphs

In order for a robot to perform manipulation tasks in changing, un-
structured environments, it must be able to quickly solve planning
queries. In this section, we discuss formulating the motion planning
problem as best-first graph search over paths and propose an algo-
rithm on explicit graphs. Our approach is motivated by two insights.

Explicit Optimization of Ensemble Effort. This section references two
different types of efficiency with regard to robotic tasks. First, once a
planner has computed a solution path or trajectory, there is the cost
incurred while executing that trajectory. This is the traditional cost
optimized for by planners. Second, there is the cost incurred from
actually computing the solution itself. We propose to optimize for
both types of effort explicitly.

Explicit Graph Representation. We contend that representing graphs
explicitly is better suited to search over roadmap graphs for two
reasons. First, it is reasonable to store the entire graph explicitly in
memory (e.g. 10k vertices for a 7-DOF arm); techniques to incre-
mentally build the graph via an implicit graph representation are
not necessary. Second, it is evaluating edge costs (as opposed to ex-
panding vertices or maintaining a sorted open list) that dominates
planning costs. In other words, precious planning effort is principally
manifested in evaluated edge costs, not determined vertex g-values.

2.1.1 Generic Best-First Search Algorithm over Paths

Best-first search2 is a general class of search algorithms. We choose 2 P. H. Winston. Artificial Intelligene.
Addison-Wesley Pub. Co., 1977to express the general algorith over paths instead of vertices for clarity

and generality because we are focused primarily on explicit graphs.

Algorithm 1 Generic Best-First Search Algorithm Outline
1: procedure GenericBestFirst(G)
2: loop
3: π∗ = arg min

π∈Π(G)

f (π) . For some path cost function f (π)

4: if π∗ fully evaluated then
5: return π∗

6: EvalPath(π∗) . For some evaluation function

This formulation admits two choices:

Cost Function f (π). What is the cost function f (π) over paths used
to select the path for evaluation at each iteration? Traditional graph
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search uses the following path objective:

f (π) = f̂x(π) : optimistic estimate of execution effort. (2.1)

In other worts, f̂x(π) gives a lower bound on the cost of executing
path π given the algorithm’s current knowledge of the graph. In
our case, if the path consists of a mix of evaluated and unevaluated
edges, we could write this as:

f̂x(π) = ∑
e∈π

{
x[e] if edge e evaluated
x̂(e) otherwise

, (2.2)

with x̂(e) an admissible estimate of the edge’s execution effort.

Evaluation Procedure EvalPath(π). How is a potential path evalu-
ated? We discuss this later in this section.

The choice of these two components of the algorithm intimately
depend on the graph representation. For appropriate selection of
f (π) and EvalPath, traditional algorithms such as A* [9] and the
Bidirectional Heuristic Front-to-Front Algorithm [31] are instances of
this general formulation.

2.1.2 Penalizing Planning Effort

So far, we’ve been searching for a path which optimizes our execu-
tion effort objective (2.2). However, as we motivated earlier, there are
two distint notions of efficency; here, we focus instead on planning
efficiency. Consider the following path objective:

f (π) = f̂p(π) : optimistic estimate of planning effort. (2.3)

For problems over large graphs, planning effort may be dominated
by discovering vertex successors or maintaining a sorted vertex open
list. However, in many manipulation problems, planning effort is Traditional metrics for planning effort

include vertiex expansions and heap
percolates.

instead dominated by edge evaluations. Therefore, our objective f̂p

penalizes remaining effort required to evaluate edges along a path:

f̂p(π) = ∑
e∈π

{
0 if edge e evaluated

p̂(e) otherwise
. (2.4)

The new edge heuristic p̂(e) estimates this evaluation cost. Suggested metrics for p̂ include plan-
ning time or computational energy.The first graph planner to explicitly include such a heuristic to

estimate the remaining computational planning effort in a best-first
search was A∗ε [24]. While the approach we take is different, a moti-
vating quote from this paper is relevant:

“The heuristic [ x̂ ] ... is of an entirely different nature than the ...
heuristic [ p̂ ] ... . The former anticipates the reduction in solution quality
due to the remaining part of the solution once it is found; the latter
estimates the computational effort required for completing the search.”
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2.1.3 Ensemble Effort Objective

In general, we might consider weighting each objective:

f (π) = λ f̂p(π) + (1− λ) f̂x(π). (2.5)

We call this effort model ensemble effort in that it combines both plan-
ning and execution effort. Note that with λ = 0, we recover our old
solution cost objective f̂x(π). Represented over edges, we can write:

f (π) = ∑
e∈π

{
(1− λ)x[e] if edge e evaluated

λ p̂(e) + (1− λ)x̂(e) otherwise
. (2.6)

We represent a particular choice of p̂(e) and x̂(e), along with the
evaluation function x(e), as an ensemble effort model denoted withM: For examples of ensemble effort mod-

els, see Section 2.2.2.

M : (x, x̂, p̂) (2.7)

Simplification with Propotional Heuristics. Suppose that our heuristic
for planning effort were proportional to that for execution effort,

p̂(e) = α x̂(e). (2.8)

In this case, we can write: This might happen if, for example, each
were proportional to the edge’s distance
(with longer paths taking longer to both
collision check and execute at constant
velocity).

f (π) = (1− λ) ∑
e∈π

{
x[e] if edge e evaluated[

1 + αλ
1−λ

]
x̂(e) otherwise

. (2.9)

Further, if we use an EvalPath() function which forward-evaluates
vertices or edges (as is required with implicit graph representations),
and λ < 1, we can rewrite (2.9) as:

f (π) ∝ ∑
e evaled

x[e]︸ ︷︷ ︸
g[v f ]

+

[
1 +

αλ

1− λ

]
︸ ︷︷ ︸
inflation factor ε

x̂(elast)︸ ︷︷ ︸
h(v f )

. (2.10)

In other words, weighted A* is equivalent to best-first search whose
objective includes a planning effort term proportional to execution effort. In
particular, if planning effort is proportional to execution effort by a
factor of α, a weighted A* search with inflation factor ε is the result of
best-first search with λ = ε−1

α+ε−1 .

2.1.4 The E8 Explicit Graph Search Algorithm

The E8 algorithm (Exploiting Ensemble Effort Estimates on Explicit
graphs with Expensive Edge Evaluations) is the result of applying
best-first search with the λ-mediated objective from (2.5). The al-
gorithm is lazy, in that edge evaluations are deferred until they are
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Algorithm 2 E8 Explicit Graph Search

1: procedure E8(G, Vstart, Vgoal,M, λ)
2: xeval[·]← empty map (xeval : E→ R+

0 )
3: for all e ∈ G do
4: e.cost← λ p̂(e) + (1− λ) x̂(e) . Ensemble effort modelM
5: loop
6: π∗ = BiDijkstras(G, Vstart, Vgoal)

7: if e ∈ xeval ∀ e ∈ π∗ then
8: return π∗

9: Eto_eval ← PathEvalOrder(π∗) . See Section 2.1.4
10: for all e ∈ Eto_eval do
11: xeval[e]← x(e) . Evaluate edge (expensive!)
12: e.cost← (1− λ) xeval[e] . Update ensemble estimate
13: if xeval[e] > x̂(e) then
14: break

needed. In fact, it can be seen as a generalization of the LazyPRM
[2], but which also considers planning effort in its objective. Further,
the algorithm is heuristic-focused, guided by its cost modelM. Its be-
havior mimics that of an inflated heuristic planner depending on the
selection of the planning/execution cost tradeoff parameter λ.

The E8 algorithm (Algorithm 2) directly follows the outline of
best-first search over paths (Algorithm 1). Since edge evaluations are
expensive, we maintain a map xeval[·] storing the known execution
costs of all edges evaluated so far (line 2). Each edge’s current cost
(line 4) is derived from the problem’s ensemble effort modelM.

At each iteration, we optimistically select the best path π∗ which
minimizes the this ensemble objective. We select over all paths which
connect a vertex in Vstart to a vertex in Vgoal (any-to-any). For types of planner specifications

besides any-to-any, see Chapter 2.5.If this path is already fully evaluated, we finish on line 8. Note
that if edge costs x(e) may be infinity (e.g. to denote an infeasible
edge), the algorithm will terminate with a fully evaluated path with
infinite cost if no feasible path exists.

Otherwise, we evaluate the path’s unevaluated edges (lines 9 to
14). We do this in a particular order, as discussed later in this sec-
tion. For each edge, we evaluate its execution cost x(e) (line 11) and
update our effort estimate (line 12) to account for (a) the actual ex-
ecution effort and (b) the fact that no additional planning effort is
needed. If the execution cost of any edge of the path proves more ex-
pensive than we had anticipated (line 13), we break and select a new
path.

The E8 algorithm admits a number of choices.
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Choosing λ. The choice of the λ parameter affects the algorithm’s
tradeoff between planning and execution effort. See research question Q1.

Finding the Optimistic-Optimal Path. The current implementation
of E8 uses bidirectional Dijkstra’s algorithm (line 6) to select the
lowest-cost path through the graph at each iteration of the algorithm.
However, since the cost of only a few edges are adjusted at each
iteration (line 12), it appears to be well-suited to incremental graph
search algorithms (e.g. [16]) to improve search efficiency. See research question Q2.

Selecting the Edge Evaluation Order. Once a candidate path is selected,
its constituent unevaluated edges are evaluted in a particular order
(line 9). Our current algorithm orders the edges alternating from the
ends in. With different choices (e.g. forwards or backwards), E8 looks
a lot like A∗. See research question Q5.

2.1.5 Repeated Queries

The E8 algorithm is multi-query, in that it maintains a data structure
of evaluated edge execution costs xeval[·] which allows reuse between
different planning problems over the same graph G, either sequen-
tially or in interleaved fashion. For different queries on the same
graph, edge evaluations can simply be used in subsequent searches.

When used in this fashion, E8 behaves similarily to Experience
graphs3. E-graphs are a type of best-first search which are designed 3 M. Phillips, B. J. Cohen, S. Chitta, and

M. Likhachev. E-graphs: Bootstrapping
planning with experience graphs. In
Robotics: Science and Systems, 2012

to find paths quickly by incentivizing the planner to rely on on edges
from previous successful plans. While the E-graph planner is origi-
nally expressed over implicit graphs, we can instead express it explic-
itly as in Algorithm 1 with the following objective:

fE-graphs(π) ∝ ∑
e∈π


x[e] if edge e evaluated, this search

ε x[e] if edge e evaluated, previous search
ε εE x̂(e) otherwise

(2.11)
The E8 algorithm is therefore equivalent to a simplified version

of the E-Graph algorithm with ε = 1 and εE = 1 + αλ
1−λ , with the

exception that all evaluated edges are placed in the graph, not just
the edges on previous solution paths. Note that E-graph shortcuts are
not necessary for small explicit graphs.

2.1.6 Experimental Evaluation of the E8 Algorithm

We propose to perform experiments on graphs with expensive edge
evaluations in order to evaluate the E8 algorithm. See Figure 2.2 for See research question Q3.

an example problem.
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(a) Planning world. (b) A∗ search.
Planning Effort: 692.3
Execution Effort: 14.2
Total Effort: 706.5

(c) Weighted A∗ search, ε = 3
Planning Effort: 390.8
Execution Effort: 18.5
Total Effort: 409.3

(d) E8 search, λ = 0.5
Planning Effort: 358.8
Execution Effort: 20.5
Total Effort: 379.3

Figure 2.2: A simple 2D explicit graph
search problem, comparing three
approaches. A robot (bottom left) must
reach a goal position (top right) on
an 8-connected graph while avoiding
a wall (black). Execution effort is
equal to path length. The planning
effort required to check an edge is
proportional to its distance to the
blue radar at top. The E8 algorithm’s
solution has a lower combined planning
and execution effort.
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2.2 Roadmaps in Continuous Spaces

This section explores how we can construct roadmaps covering con-
figuration space that can then be searched by the E8 algorithm. Here,
we focus on the single-query problem; refer to Section 2.3 for ex-
tension to cached data structures. Due to this focus, we strive to
compare against alternative single-query approaches as we discuss in
Section 2.2.6.

Figure 2.3: A 3-subgraph densified
roadmap from pseudorandom mile-
stones.

Although our approach makes no commitment to the roadmap
class (e.g. probabalistic or lattice-based, r-disk or k-nearest, etc.),
we propose to use Random Geometric Graphs (RGGs) as roadmaps
covering configuration space (see Figure 2.3), borrowing heavily from
prior approaches [15] and analyses [14]. However, we are interested
in trying other non-probabalistic sources of roadmap milestones (e.g.
Halton sequences, Figure 2.4) as described in [19]. Note that by pre-
computing a sequence of samples, nearest-neighbor queries can be
moved entirely offline. Also, since it can be computed offline, you can
sparsify it [30].

Figure 2.4: A Halton sequence (taken
from Branicky, LaValle, Olson, and
Yang, “Deterministic vs. Probabalistic
Roadmaps.”

2.2.1 Continuous-Space Problem Formulation

Consider a planning problem in a configuration space C between
start and goal configurations within a collision-free subset Cfree ⊆ C.
A continuous feasible solution path q(t) must then satisfy

q(t) ∈ Cfree ∀ t ∈ [0, 1]
q(0) = qstart, q(1) = qgoal .

(2.12)

Eqns. (2.12) specify single configurations qstart and qgoal , but the
formulation is trivially extended to start/goal sets.

While simple problems may admit explicit representations of
Cfree, recent approaches to complex problems (e.g. sampling-based
planners) instead reason implicitly via test function(s).4 To capture 4 S. M. LaValle. Planning Algorithms.

Cambridge University Press, Cam-
bridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/

this, we endow Cfree with an indicator function 1free(q):

1free(q) =

{
True if q ∈ Cfree

False otherwise.
(2.13)

The set itself can equivalently be defined w.r.t. its indicator:

Cfree = {q ∈ C | 1free(q) = True}. (2.14)

Common examples of such indicators (2.13) include validity check-
ers for geometric (workspace) collision, stability, and visibility con-
straints. Note that for complex problems, evaluation of these indica-
tors tends to dominate planning effort.



22 christopher m. dellin

Excusing the abuse of notation, we define an analogous indicator
functional 1free[·] which operates on path segments q(t). We use
parentheses for functions and brackets for functionals.

1free[q(t)] =

{
True if q(t) ∈ Cfree ∀ t ∈ [0, 1]
False otherwise.

(2.15)

A common way to approximate this functional is to call the subset’s
corresponding indicator function 1free(q) (e.g. a collision check) at
some fixed resolution.

2.2.2 Ensemble Effort Models

The E8 algorithm requires an ensemble effort modelM over graph
edges. Note that these models can be simply added element-wise.

Alg. 3 Set Validity ModelMvalid

1: function xvalid(e, Cfree)
2: if 1free[qe(t)] then
3: return 0
4: else
5: return ∞

6: function x̂valid(e, Cfree)
7: return 0

8: function p̂valid(e, Cfree)
9: return p̂free[qe(t)]

Alg. 4 Distance ModelMdist

1: function xdist(e)
2: return ||qe(1)− qe(0)||
3: function x̂dist(e)
4: return ||qe(1)− qe(0)||
5: function p̂dist(e)
6: return 0

Models of Planning Effort. Suppose we also have an estimate p̂free[q(t)]
of the effort required to evaluate the indicator functional (2.15), for
example proportional to the number of collision checks required.
The simplest way to capture subset membership of an edge e during
the search is to map the indicator and its planning effort estimate to
real-valued costs as described inMvalid (Algorithm 3). Here, invalid
edges imply infinite execution effort.

Models of Execution Effort. The simplest model might simply com-
pute Euclidean distances between vertices (Mdist, Algorithm 4), al-
though other models are possible (see Table 2.1). When posed as a
traditional graph search problem, E8 requires an additive effort mod-
els – the cost of a path is the sum of the costs of its consituent edges.
However, for many problems it may be advantageous to consider
non-additive models (e.g. total smoothed time), especially for execu-
tion costs for fast motions. Note that non-additive models render the
path search problem more difficult.

Model Additive?

Path Length Yes
Bounded-Vel-Acc [10] Yes
Smoothed No

Table 2.1: Execution cost models. Addi-
tive models admit efficient graph search
methods when choosing optimistic
paths for evaluation.
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2.2.3 The E8-PRM with Hard Batching

Algorithm 5 E8-PRM Planner with Hard Batching
1: G ← empty graph
2: M←Mvalid(Cfree) +Mexec

3: procedure E8-PRM(G, Vstart, Vgoal, N,M, λ)
4: loop
5: PrmAddSamples(G, Vstart, Vgoal, N)
6: π∗ ← E8(G, Vstart, Vgoal,M, λ) . See Algorithm 2

7: if x̂(π∗) < ∞ then . x̂(·) from cost modelM
8: return π∗

(a) Paths with λ = 0
Average length: 733.0

Average check cost: 7219.5

(b) Paths with λ = 1
Average length: 836.5

Average check cost: 4692.6

Figure 2.5: Examples of paths for a 2D
problem for different values of λ. As λ
is increased, paths are longer, but are
faster to find.

The E8-PRM (Algorithm 5) operates on an initially empty persis-
tent roadmap graph G. Each vertex represents a configuration q ∈ C,
and each edge represents a path q(t) planned by a local planner.

The E8-PRM proceeds in batches; at the start of each batch, the
PrmAddSamples procedure adds N additional vertices to the graph
sampled from C (including sampled start and goal configurations
from Vstart, Vgoal if not yet present), and edges are generated according
to the PRM construction method.

With the exception of the path evaluation strategy (see Section 2.2.5),
the E8-PRM with λ = 0 is equivalent to the Lazy PRM [2]. Figure 2.5
shows solution paths for a simple 2D path planning problem for
various runs of the algorithm.

2.2.4 Optimization in Expectation

The purpose of the incremental graph densification strategy achieved
by hard batching (Algorithm 5) is to account for spatial correlation in
Cfree. We would like to motivate this more formally.

We propose to extend the E8-PRM planner to minimize ensemble
effort in expection using a probabalistic model of Cfree. Even if this is
too expensive, we can motivate the incremental densification idea,
with a graduated cost model to approximate a probabalistic model of
the C-space. See research question Q4.

2.2.5 Path Evaluation

In order to use the E8 algorithm, we must provide an edge evalu-
ation function x(e). For feasibility checks (e.g. tested via collision
checkers), we approximate each edge check by evaluating the corre-
sponding validity checker at a fixed resolution along the path.

More generally, however, since the E8-PRM plans in a continuous
space, we can actually implement more complex path tests, such as
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the whole-path bisection test used in the Lazy PRM. See research question Q5.

2.2.6 Experimental Evaluation of the E8-PRM

(a) RRT Ext-Con, R=1 (b) RRT Con-Con, R=1 (c) E8-PRM, λ = 0

(d) RRT Ext-Con, R=6 (e) RRT Con-Con, R=6 (f) E8-PRM, λ = 1
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(g) Plot of average collision checks vs solution path cost for the differ-
ent algorithms.

Figure 2.6: Example runs with different
planners, with the same sequence of
samples. Note that E8-PRM with λ = 0
is equivalent to the Lazy PRM. Red dots
show collision checks.

I hope to show that the E8-PRM is competitive with RRT-Connect
in terms of planning effort required to find a feasible path.

We will compare this approach to single-query baseline ap-
proaches such as the RRT [17], EST [11], SBL [28], and Lazy PRM [2],
approaches over lattices such as E-graphs, as well as asymptotically-
optimal planners such as RRT* [14] and BIT* [7]. Also compare
briefly against trajectory optimization approaches, though these
are largely complementary. For example, there’s CHOMP [36] and
TrajOpt [29]. Defer discussion of caching to subsequent sections.

See Figure 2.6 for results on a simple 2D problem.
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2.3 The Multi-Set Planning Problem

Motion planning approaches that build graphs in the collision-free
subset of configuration space, e.g. the PRM [15] and RRT [20], have
proven promising for high-dimensional articulated robotics problems
in unstructured environments. These approaches devote a large
amount of computational effort testing configurations and paths for
collision, and the resulting graph can then be reused for other queries
in the same collision-free subset. The E8-PRM, introduced above in
Section 2.2, is another such approach.

However, for manipuation problems, this subset of the robot’s
configuration space is sensitive to the locations and shapes of both
people and objects in the environment, as well as the robot itself. In
addition, it depends on the shape and pose of any object grasped by
the robot. This makes it difficult not only to apply the results of prior
planning computation to the current problem, but also to efficiently
consider planned or hypothesized motions, since we must reconstruct
our graph from scratch whenever the environment changes. This is
especially the case for multi-step manipulation tasks that must be
planned into the future.

A large body of prior work has focused on methods to improve
planning efficiency on manipulation problems. We show that many
of these approaches are in fact special instances of a more general
structure, which we formulate as the multi-set planning problem.

2.3.1 Multi-Set Problem Formulation

The multi-set planning problem is a generalization of both the
movers’ problem and the multi-query planning problem5. The reader 5 L. Kavraki, P. Svestka, J.-C. Latombe,

and M. Overmars. Probabilistic
roadmaps for path planning in high-
dimensional configuration spaces.
Robotics and Automation, IEEE Transac-
tions on, 12(4):566–580, Aug. 1996

is referred to Fig. 2.7 for a general example, as well as a simple in-
stantiation on a 2D manipulation task. The multi-set problem formu-
lation explicitly captures both planning and execution effort and can
therefore be used as an ensemble effort model for use in the E8-PRM
planner across queries.

The multi-set planning problem is multi-query in a fixed configu-
ration space C. However, unlike related problems in which all queries
demand solution paths contained within a single common subset of
C (usually the set of collision-free configurations, denoted Cfree), the
multi-set problem allows for the specification of a family of multiple
such subsets F = {A, B, . . . }. Like Cfree, each member of F is a sub-
set of the common configuration space (that is, S ⊆ C ∀ S ∈ F ),
and each subset S has its own indicator and planning estimator 1S[·]
and p̂S(·) as in Section 2.2.1. For example, in Fig. 2.7(e), C-subset B
consists of configurations free of collision between the robot and the
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C

S12 S23

q1

q2

q3

(a) A two-part multi-set problem in C, first
between q1 and q2 through S12, then between
q2 and q3 through S23. The two free subsets S12
and S23 are distinct but related.

C
A

B C

(b) The free subsets are related via other un-
derlying subsets of C, with S12 = A ∩ B and
S23 = A ∩ C. A planner solving the first part
(from q1 to q2) has found paths in S12.

C
A

C

(c) Due to the set relations, a planner solving
the second part (from q2 to q3 in S23) can reuse
any segment known to be in S12 by checking
only for its membership in C.

q1

q ∈ S12

S12

q2

q3

q ∈ S23

S23

(d) A forklift in a parking lot (q1) must retrieve
an object (q2) and reverse park (q3). This two-part
problem requires plans in distinct collision-free
C-subsets S12 and S23.

q ∈ A
A

q ∈ B
B

q ∈ C
C

(e) Sets S12 and S23 are subsets of the configu-
ration space of the robot C = SE(2), and can be
represented as intersections of underlying subsets
A, B, and C as in (b).

q1 q2

q1 → q2

q2?

q2 → q3

q2

q2 → q3

(f) After planning a path from q1 to q2 (top), a
planner can reuse a configuration in S12 (middle)
by checking only for its membership in subset C,
resulting in plan reuse (bottom).

Figure 2.7: An illustration of a multi-set planning problem in a common configuration space C. The problem definition
generalizes to an artibrary number of configuration space subsets and set relations between them. When two queries in
different subests are solved sequentially, a multi-set planner can reuse path segments less expensively. See Section 2.3.2
for examples in manipulation.

Figure 2.7: x
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initial object pose.
The problem supports an arbitrary number of queries U . Each

query u demands a solution path through a single C-subset U ∈ F
(see Fig 2.8):

u : (qstart, qgoal , U). (2.16)

Queries U Subsets of C
u1

u2

u3

Cfree

(a) Multi-query planning

Queries U Subsets of C
u1

u2

u3

A

B

C

(b) Multi-set planning

Figure 2.8: While queries in multi-query
planning reference the same subset of
C, each multi-set query references one
of a number of such sets.

C

A

B

A ⊆ B
1A ⇒ 1B

(a) Containment relation

C
A

B
C

A = B ∩ C
1B ∧ 1C ⇒ 1A

(b) Intersection relation

Figure 2.9: Types of subset relations.
Each relation can be expressed directly
as set relations w.r.t a set S, or equiv-
alently as logical statements on the
corresponding indicator functions 1S(·).

Finally, the multi-set problem incudes a list of set relations R
between the C-subsets in F . These can be expressed directly using
set theoretic relations, or equivalently as logical statements on the
corresponding indicator functions. Common types of such relations
(containment and intersection) are illustated in Fig. 2.9. Fig. 2.7 gives
an example of intersection relations; an example of containment is a
padded (conservative) robot model (see Section 2.3.2).

Together, these four elements (a configuration space C, subsets F
each with endowed indicators, a set of queries U , and a list of subset
relations R) comprise a multi-set planning problem.

Example Problem. Consider the diagram from Fig. 2.7. F consists of
five C-subsets labeled A, B, C, S12, and S23, and we have two queries,
u12 : (q1, q2, S12) and u23 : (q2, q3, S23). R consists of the two relations
S12 = A ∩ B and S23 = A ∩ C. Suppose a cost modelM wherein eval-
uating the indicator 1A incurs cost 4, evaluating 1B and 1C incurs cost
2, and evaluating 1S12 and 1S23 incurs cost 6. In the manipulation ex-
ample in Fig. 2.7(d), this would be the case if each pairwise outlined
shape collision check incurs unit cost.

Suppose a graph structure within S12 has been grown to solve
the first query u12. During the subsequent solve of query u23, an
existing path segment known to be in S12 can be shown to also be
contained within S23 by only evaluating 1C. In the manipulation ex-
ample, reusing an a configuration from the previous search would
require only a check of cost 2, instead of cost 6 for a new configu-
ration. Thus, we might hope that a planner may be biased towards
reusing said path segments in this case.

2.3.2 Multi-Set Problems in Manipulation Tasks

Instances of multi-set problems are especially prevalent when plan-
ning for manipulation tasks with articulated robots. This section de-
tails several such instances. While these instances are discussed sep-
arately here, they are often present simultaneously. See Section 2.4.3
for experimental results for a problem which includes several of the
multi-set problem instances described below.

We also provide an implementation for the OpenRAVE [6] virtual
kinematic planning environment which automatically discovers C-
subsets in manipulation tasks.
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Debris object
removed

Additional
voxels seen

C

S1

C
C

R A

S2

Figure 2.10: Structured or unstructured
dynamic environments can be rep-
resented as a multi-set problem (see
Section 2.3.2).

(Left) A disaster response robot main-
tains a dynamic unstructured environ-
ment model using coarse voxels (scene
data from a debris-clearing task at a
recent disaster response competition).
Since the last planning query, voxels
have been added (green) and removed
(red).

(Right) C-subsets and relations can be
added retroactively. Here, the graph
for an initial query is checked w.r.t
S1. After environment changes, S1 is
redefined in terms of the C-subsets
derived from the set of common, added,
and removed elements, allowing for
reuse on a query in S2. Here, the
planner need only check existing path
segments against added voxels in order
to reuse them for the current query.

Dynamic Environments. The sensors on most articulated robots allow
them to maintain dynamic environment models to track changing
collision geometry. These models might be structured (e.g. recog-
nizing objects with known models) or unstructured (e.g. occupancy
models). In both cases, even in a changing world, there are often
areas that are fixed between planning queries.

Prior work (e.g. [12]) leverages this by imposing a dichotomy be-
tween fixed and moving components of C. Our formulation extends
this to an arbitrary number of such labels, including ones defined
retroactively (i.e. during planning; see Fig. 2.10). By explicitly la-
beling such areas in workspace (and leveraging the set containment
property [23]), we can represent this structure as a multi-set planning
problem.

Grasped Objects One instance specific to manipulation problems is
the handling of grasped objects. For example, consider a manipulator
which grasps a geometric object. This affects the set of collision-free
configurations across a large section of C relative to the old set of
valid configurations Sold. However, the resulting C-subset Snew can
be represented simply as Snew = Sold ∩ G, with G the set of robot
configurations in which the grasped object (only) is deemed free of
collision with the robot and environment. This structure is discussed
in the context of the conditional reachability graph, part of the FFRob

heuristic framework [8].
For example, consider the manipulation problem in Figure 2.14.

The robot must find a path which moves its arm to grasp the cup.
After the cup is grasped, the robot can reuse any edge in the existing
roadmap by simply checking the grasped cup against the remainder
of the environment. This structure, together with the approach to
dynamic environments, are included together in the experimental
results (Section 2.4.3).

C

R E

S qstart

qgoal

Figure 2.11: A roadmap is pre-
computed in R, the subset of C con-
sisting of configurations free of robot
self-collision. Online, the planner must
find a path that’s also within E, the sub-
set free of environment collision. When
solving this query in S = R ∩ E, the
Multi-Set PRM automatically prefers
potential paths with pre-computed
edges (e.g. shown in grey) due to lower
planning costs over alternatives with
lower execution costs.
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Cached Self-Collision-Checked Roadmaps Self-collision checking is a
potentially expensive component to articulated motion planning; in
contrast to environment checking, it is fundamentally quadratic in
the number of moving links. Further, pairs of links to be checked
tend to be relatively close to each other, reducing the effeciveness of
broad-phase approaches.

Leven and Hutchinson [21] introduced the concept of a pre-cached
roadmap consisting of configurations and paths already known to be
valid w.r.t. self-collision. As a type of invariant in C, this can be seen
as a particular instance of multi-set planning. See Fig. 2.11.

Integration with Broad-Phase Collision Checking The multi-set formu-
lation also enables motion planners to reason directly about different
robot or environment models. For example, consider two geometric
robot models, one with high quality (e.g. from a CAD program), and
one hand-tuned “padded” model consisting of a small number of
simple conservative bounding volumes. The C-subsets derived from
these models are related by Rpadded ⊆ RCAD. Collision checkers cur-
rently use a similar approach internally to speed up collision checks
(see Fig. 2.12. and Fig 2.13).

Figure 2.12: Collision validity checking
is a commonly used indicator function.
The multi-set formulation allows an
intelligent planner to reach inside the
checker’s “black box” and reduce the
number of costly narrow-phase checks.
Resulting paths tend to be cheaper
to compute and stay further from
obstacles.

Single-Set Motion Planner

Collision Validity Checker

Broad
Phase

Narrow
Phase

Valid Valid Invalid
qtest

Y

N

Y

N

(a) A single-set planner testing simply for membership in Cfree
treats a collision validity checker as a “black box.” Internally,
modern checkers first employ an inexpensive broad-phase
check using a low-dimensional conservative representation to
quickly identify non-colliding bodies before resorting to an
expensive narrow-phase check.

Multi-Set Motion Planner

Broad-Phase Checker Narrow-Phase Checker

Broad
Phase

Narrow
Phase

Valid Invalid Valid Invalid

?

qtest qtest

Y

N

Y

N

(b) A multi-set planner can explicitly reason about the conser-
vative nature of the broad-phase check. This allows it to defer
some narrow phase checks (often indefinitely) and instead
prefer paths that require fewer expensive checks.
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2.4 Multi-Set as an Effort Model for Roadmap Planners

This section lays out how to leverage the multi-set formulation as
a planning effort model for use in the E8-PRM. The resulting algo-
rithm, the Multi-Set PRM, exploits the multi-set structure inherent in
manipulation problems by efficiently reuses planning computation
between related queries.

2.4.1 The Multi-Set PRM

The Multi-Set PRM (Algorithm 6) is a simple extension of the E8-PRM
(Section 2.2). They key differences are that (a) it reasons about C-
subsets using logical propositions, and (b) it uses a multi-set ensem-
ble effort modelMmulti to capture relations between these subsets.

Algorithm 6 Multi-Set PRM Planner
1: G ← empty graph
2: Pglobal ← global propositions from R
3: procedure MultiSetPRM(G, Vstart, Vgoal, U, N, λ)
4: M←Mvalid(U) +Mexec

5: return E8-PRM(G, Vstart, Vgoal,M, N, λ) . See Algorithm 5.

Set Relations as Logical Propositions. The planner represents the list
of set relations R (Section 2.3) specified in the multi-set problem for-
mulation as a set of logical propositions Pglobal which are considered
globally applicable. For example, the proposition 1A ⇒ 1B follows
from the relation A ⊆ B (see Fig. 2.9). In addition, each edge e in the
roadmap G is augmented with an initially empty set e.P containing
all additional edge-specific propositions known to be true as a result
of any indicator functions evaluated over that edge. For example,
if planner evaluated the indicator 1B[e] and it returned False, the
proposition ¬1B would be added to e.P. Together, such sets of propo-
sitions can be used as premises as part of an argument to demonstrate
a conclusion; a logical solver can then be used validate or invalidate
the argument. For example, an argument with these premises and
conclusion {(1A ⇒ 1B), (¬1B)} ⇒ (¬1A) can be shown to be valid.

A Multi-Set Ensemble Effort Model. The key to the Multi-Set PRM
is the ensemble effort modelMmulti (Algorithm 7) which allows for
evaluation of an edge as well as estimates of its planning and ex-
ecution effort in a way that takes advantage of multi-set structure.
The core of this model is the MultiOptCert function which takes
as input an edge qe, a query C-subset U, and a set of known log-
ical propositions Pknown for that edge, and as output produces an
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optimistic validation certificate consisting of subset indicators which
if evaluated would validate the membership of the edge in U with
lowest effort.

Algorithm 7 Multi-Set Validitiy Effort ModelMmulti

1: function xmulti(e, U)
2: (Fcert, bcert, p̂cert)← MultiOptCert(qe, U, Pglobal ∪ e.Peval)

3: for all S ∈ Fcert do
4: beval ← 1S[qe]

5: e.Peval ← e.Peval ∪
{

1S if beval

¬1S otherwise

}
6: if beval 6= bcert(S) then
7: return ∞

8: return 0
9: function x̂multi(e, U)

10: return 0
11: function p̂multi(e, U)
12: (Fcert, bcert, p̂cert)← MultiOptCert(qe, U, Pglobal ∪ e.Peval)

13: return p̂cert

Calculating the Multi-Set Optimistic Certificate The MultiOptCert

function (Alg. 8) is tasked with computing the optimistically optimal
set of indicator evaluations to perform for the edge in order to vali-
date its membership in the query C-subset U. The function returns
three elements: (a) the family of C-subsets Fcert ⊆ F whose indicators
are to be evaluated, (b) a binary function bres which provides the de-
sired indicator result for each evaluation, and (c) the total evaluation
cost p̂cert given by the p̂S[·] functionals (Section 2.3.1).

Algorithm 8 Multi-Set Optimistic Certification
1: function MultiOptCert(qe, U, Pknown)
2: Timply ← ∅
3: for all Fcert ∈ P(F ) do
4: p̂cert ← ∑S∈Fcert p̂S[qe]

5: for all bres s.t. bres : Fcert → {True, False} do

6: Pres ←
{

1S if bres(S)
¬1S otherwise

∣∣∣∣∣ S ∈ Fcert

}
7: if Pknown ∪ Pres ⇒ 1U is valid then
8: Timply ← Timply ∪ {(Fcert, bres, p̂cert)}
9: return (Fcert, bres, p̂cert) ∈ Timply with lowest p̂cert

The function accumulates a set Timply of valid certificates which
would imply membership in U. We proceed by considering all com-
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binations of available C-subset indicators Fcert (line 3). For each set
of evaluations, we compute the planning effort p̂cert which would be
required. We then consider all possible outcomes for each indicator
by iterating over all functions bres mapping from C-subset S to binary
values (line 5). For each potential outcome bres, we form the set of
additional propositions Pres, and then use a propositional logic solver
to determine whether the aggregate premises imply membership in
the query C-subset U. If so, this certificate is added to Timply, and the
lowest-effort certificate is returned.

2.4.2 Behavior of the Multi-Set PRM

See Figure 2.13 for a simple example with integrated broad-phase
collision checking as described in Section 2.3.2.

(a) Paths with λ = 0
Average length: 733.0

Average check cost: 7219.5

(b) Paths with λ = 1
Average length: 836.5

Average check cost: 4692.6

(c) Paths with λ = 0
Average length: 733.0

Average check cost: 2685.7

(d) Paths with λ = 1
Average length: 907.1

Average check cost: 1064.5

Figure 2.13: A simple 2D example of
the Multi-Set PRM using a broad-phase
check. Checking for collision with the
grey box is 10x less expensive than with
the actual black obstacle.

2.4.3 Home Robot Manipulation Task Results

We tested the Multi-Set PRM on the manipulation task described in
Fig. 2.14. We used the r-disk PRM construction rule with r = 2.0
rad, and a batch size of N = 1000. Planning times are measured on
a Lenovo T430s laptop. The planner was asked to solve each of the
steps of the plan sequentially.
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(a) Starting Configuration (b) Step 1, in S1 (c) Step 2, in S2 (d) Step 3, in S3 (e) Ending Configuration.

Figure 2.14: A home robot performing
a three-step manipulation task. It must
move from its home configuration to
grasp the cup, transfer it to a drop
location above the bin, and return
home. Experimental results for the
Multi-Set PRM are shown in Table 2.2

We varied (a) the planning vs. execution parameter λ (see Sec-
tion 2.1.4), and (b) the subset relations provided to the planner as
described in Section 2.3.2. We measured the time required for plan-
ning (s) and the length of the resulting solution resulting path (rad)
for each step of the task.

Note that the Multi-Set PRM, with no relations specified and λ =

0 reduces to the Lazy PRM. As expected, increasing λ resulted in
decreased planning times but yielded longer paths. Including more
C-subset relations also significantly reduced planning times, and had
little effect on path lengths on this problem. Note that the planning
time results when using the cached self-collision-checked roadmap,
denoted by (*), do not include the pre-computation time.

Note that including inter-step relations drastically reduces plan-
ning times for subsequent steps. We expect this trend would continue
as more steps are included. Also, note that when λ = 0, path length
is unchanged as the number of set relations is changed – this is be-
cause the paths that are selected for evaluation by the algorithm are a
function only of their (constant) lengths.

Table 2.2: Home robot manipulation
task results. The entry with no rela-
tions and λ = 0 is equivalent to the
LazyPRM.

Relations Cost
λ = 0 λ = 0.5 λ = 1

Step 1 Step 2 Step 3 Total Step 1 Step 2 Step 3 Total Step 1 Step 2 Step 3 Total

None
Plan 6.16 s 3.72 s 2.38 s 12.25 s 5.52 s 2.89 s 2.12 s 10.53 s 3.39 s 2.25 s 2.12 s 7.76 s

Exec 14.22 rad 8.51 rad 4.23 rad 26.97 rad 15.07 rad 10.60 rad 4.23 rad 29.89 rad 15.07 rad 10.60 rad 4.23 rad 29.89 rad

Inter-Step Plan 6.40 s 2.33 s 0.86 s 9.59 s 5.40 s 1.55 s 0.91 s 7.86 s 3.38 s 0.91 s 0.30 s 4.59 s

(Sec. 2.3.2, 2.3.2) Exec 14.22 rad 8.51 rad 4.23 rad 26.97 rad 15.07 rad 12.21 rad 4.23 rad 31.51 rad 15.07 rad 12.21 rad 7.11 rad 34.40 rad

Self-Checked Plan* 3.54 s 2.23 s 1.17 s 6.94 s 2.99 s 1.77 s 1.16 s 5.92 s 1.47 s 1.22 s 1.16 s 3.85 s

(Sec. 2.3.2) Exec 14.22 rad 8.51 rad 4.23 rad 26.96 rad 14.22 rad 10.06 rad 4.23 rad 28.51 rad 14.22 rad 10.60 rad 4.23 rad 29.05 rad

Both
Plan* 3.25 s 1.79 s 0.90 s 5.94 s 2.88 s 1.55 s 0.92 s 5.35 s 1.47 s 1.88 s 0.31 s 3.66 s

Exec 14.22 rad 8.51 rad 4.23 rad 26.96 rad 14.22 rad 8.51 rad 4.23 rad 26.96 rad 14.22 rad 9.64 rad 6.36 rad 30.22 rad
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2.5 Comprehensive Multi-Root Planning

While the Multi-Set PRM allows planning computation to be reused
between queries across steps of a manipulation task, a higher-level
task planner must still distribute these queries in order to discover
a low-cost path through all of the task’s steps (see Figure 2.1). The
types of queries we have discussed so far (using sets Vstart and Vgoal)
take an any-to-any form – the planner will return a successful path
which connects from any start to any goal vertex. However, when
planning in parallel for multiple steps, a task planner instead re-
quires a diverse set of paths.

(a) A real-world problem.

S1

S2 S3

(b) Illustration.

Figure 2.15: The comprehensive multi-
root (CMR) problem.

To handle this, we formulate and study the comprehensive multi-
root (CMR) planning problem 6 (Figure 2.15), in which feasible paths 6 C. M. Dellin and S. S. Srinivasa. A

general technique for fast comprehen-
sive multi-root planning on graphs by
coloring vertices and deferring edges.
In Robotics and Automation (ICRA), 2015
IEEE International Conference on, 2015

are desired between multiple regions. We propose two primary con-
tributions which allow us to extend state-of-the-art sampling-based
planners. First, we propose the notion of vertex coloring as a compact
representation of the CMR objective on graphs. Second, we propose
a method for deferring edge evaluations which do not advance our ob-
jective, by way of a simple criterion over these vertex colorings. The
resulting approach can be applied to any CMR-agnostic graph-based
planner which evaluates a sequence of edges. We prove that the the-
oretical performance of the colored algorithm is always strictly better
than (or equal to) that of the corresponding uncolored version. We
then apply the approach to the Probabalistic RoadMap (PRM) algo-
rithm; the resulting Colored Probabalistic RoadMap (cPRM) is illustrated
on 2D and 7D CMR problems.

2.5.1 The Comprehensive Multi-Root Problem

We work with the robot’s configuration space C and its collision-free
subset Cfree. We consider the general problem with N root sets in this
space {S1, . . . , SN}. We seek a diverse set of feasible paths between
root sets – that is, we want to maximize the number of connected
roots between sets. We call this the comprehensive multi-root (CMR)
planning problem.
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(a) PRM (86 Edges Checked) (195

Edges Considered, No Pairs)
(b) cPRM (86 Edges Checked) (344

Edges Considered, 1 Pair)

(c) PRM (344 Edges Considered)
(125 Edges Checked, 8 Pairs)

(d) cPRM (344 Edges Considered)
(91 Edges Checked, 8 Pairs)
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Figure 2.16: A comparison between
an uncolored (a), (c) and colored (b),
(d) forest-of-trees PRM on the same
sequence of edges. Plot (e) shows the
evolution of edges in both algorithms
as they progress, and plot (f) shows the
number of between-rootset pairs found
by each.

We track progress via the r-score:

r =
∣∣{Path(xa, xb) | xa, xb in different root sets}

∣∣. (2.17)

For example, the solution illustrated in Figure 2.15(b) has an r-score
of 6 out of a maximum of 27. Our objective is to maximize the r-score
as quickly as possible.

2.5.2 A CMR Example

See Figure 2.16 for a sample CMR problem between a set of start
vertices (at top) and a set of goal vertices (at bottom). This example
uses a simple forest-of-trees PRM construction rule.
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2.6 The Proteus Task Planner

I propose to write a simple task planner, Proteus (Proteus Reasons
Over Task Effort Using Sampling). For a specified coupled manipu-
lation planning problems, it will compute its multi-set structure and
call into parallel instances of the Multi-Set PRM for each step using
the CMR objective in order to find a solution path. This will allow for
full-scope experimental evaluations to be conducted on the approach.
We assume the step decomposition is provided by either a human
operator or symbolic planner.

Interleaved Planning and Execution. While primary comparisons
will consider planning in a separate phase from execution, Proteus

will also support a simple version of interleaved planning execu-
tion for comparison to baseline approaches which commit to early
choices. In fact, the approach in this thesis is amenable to interleaved
planning and execution, since the Multi-Set PRM can continually
updated the qinit configuration. See research question Q8 for details.



3
Summary of
Proposed Work

3.1 Research Questions

I propose to address the following eight research questions in this
thesis. This section discusses each question in turn. See Table 3.1 for
a timeline.

Research Question Sec.

Q1

How should the λ parameter mediating between plan-
ning and execution cost in the E8 search algorithm be
chosen?

2.1

Q2
How can incremental graph search ideas (e.g. LPA*) be
used to efficiently implement the E8 algorithm?

2.1

Q3
How does the explicit graph approach of E8 compare to
weighted and anytime implicit algorithms?

2.1

Q4
How should discrete graphs be constructed in continuous
C-spaces with spatially correlated execution costs?

2.2

Q5
What path evaluation strategy performs best across ma-
nipulation tasks?

2.2

Q6
How does the extent of disclosed multi-set structure
affect planner performance on multi-step problems?

2.4

Q7
How does the amount of inter-step coupling affect the
merit of interleaving planning and execution?

2.6

Q8
How does the Proteus task planner compare experi-
mentally to baseline approaches on HERB and CHIMP?

2.6

Q1 How should the λ parameter mediating between planning and ex-
ecution cost in the E8 search algorithm be chosen?

See Section 2.1.
The E8 algorithm’s objective, from (2.6), trades off between plan-
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ning and execution effort, mediated by the parameter λ ∈ [0, 1].
Loosely, adjusting λ varies the behavior between feasibility (finding
paths quickly) and optimality (of execution).

With λ = 0, E8 focuses solely on minimizing execution effort. This
is similar to the LazyPRM algorithm. On the other hand, with λ = 0,
it focuses solely on minimizing planning effort, similarly to the RRT
algorithm. We discuss these comparisons to existing continuous-
space planners in Section 2.2.

If our ensemble effort modelM specifies effort estimates in the
same units (e.g. time or energy), λ = 1

2 is a natural choice. However,
due to the optimistic nature of the E8 algorithm, a different value of λ

may perform better in practice.
Minimizing total time in a greedy fashion implies λ = 0.5. For

later steps in a multi-step plan, we might have an estimate of the
probability Pe that the given query will actually be executed. We can
then pose our optimistic objective as total planning and execution
time in expection; this induces the following parameter choice:

λ =
1

1 + Pe
. (3.1)

For example, Pe = 1 induces λ = 0.5; as Pe → 0, λ → 1. In other
words, as the estimated probability of executing the path goes down,
the planner becomes greedier w.r.t. planning effort at the expense of
costlier solution paths.

This is all one-step greedy; it returns the optimal path optimisti-
cally, assuming it will be collision-free. If we have some estimate of
the proportion Pu of evaluated edges which will be part of the final
path, we can then choose a cost function which downweights the
planning time.

Q2 How can incremental graph search ideas (e.g. LPA*) be used to ef-
ficiently implement the E8 algorithm?

The E8 algorithm (Algorithm 2) from Section 2.1 is currently exe-
cuting a fully bidirectional Dijkstra’s search during each iteration.
The algorithm is clearly making multiple graph search queries over
a fixed graph with only a few edge costs changing between queries.
While, for small graphs, graph search time is small, for larger graphs,
it will become significant. How can we efficiently implement LPA* 1 1 S. Koenig, M. Likhachev, and D. Furcy.

Lifelong Planning A*. Artificial Intelli-
gence Journal, 2004

to improve planning efficiency on large graphs?
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Q3 How does the explicit graph approach of E8 compare to weighted and
anytime implicit algorithms?

This question addresses the empirical performance of the E8 algo-
rithm when compared to baseline algorithms on implicit and explicit
graphs with expensive edge evaluations. We will use metrics of mea-
sured planning and execution effort expended both on 2D graphs
and on fixed lattice and RGG graphs in Herb’s configuration space.

Q4 How should discrete graphs be constructed in continuous C-spaces
with spatially correlated execution costs?

Chapter 2.2 discusses how to embed roadmaps in C so that they can
be searched by E8.

The problem with naïvly running E8 on a dense roadmap in C
is that it tends to bunch up in local minima. This is because reduc-
ing the continuous planning problem to a graph search ignores the
spatial correlation inherent in Cfree.

One way to capture this is to maintain a probabalistic model of
Cfree, and then optimize in expectation. In particular, instead of
greedily choosing the best path based on optimistic estimates of
one-time planning and execution cost:

f (π) = λ f̂p(π) + (1− λ) f̂x(π), (3.2)

we instead reason over the total expected remaining cost:

f (π) = E
[
λ fp(π) + (1− λ) fx(π)

]
(3.3)

= Pfree(π)
[
λ f̂p(π) + (1− λ) f̂x(π)

]
+ (1− Pfree(π))

[
λFp + (1− λ)Fx

]
(3.4)

Consider the the problem from Figure 3.1. There are an infinite
number of paths to the goal, each consisting of walking along the
sidewalk, followed by crossing the street perpendicuarly at a partic-
ular position x. The sidewalk is known to be collision-free, whereas
each position on the street must be tested for collision with obstacles
with planning validation cost f̂p(π) independent of x. Execution cost
fx(π) is given by |x|+ c.

Suppose we first test walking straight across the street π0 (know-
ing nothing, this is clearly the optimistically cheapest path) and this
is deemed in collision. Which path should we consider next (e.g πa

or πb)?
What is our model for Pfree(π)? Relate to GPs for classification2. 2 C. E. Rasmussen and C. K. I.

Williams. Gaussian Processes for
Machine Learning. MIT Press,
Cambridge, Massachusetts and
London, England, 2006. Available at
http://www.gaussianprocess.org/gpml/

We are operating under assumptions:

• Single-shot greedy (won’t choose sets of paths which minimize
remaining effort)
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• Operates over paths instead of configurations or edges (won’t
probe points, no explicit exploration)

? ? ? ?

xstart

− +

Xgoal

π0πa

xa

πb

xb

Figure 3.1: Simple example problem
to illustrate optimizing remaining
ensemble cost in expectation.

Q5 What path evaluation strategy performs best across manipulation
tasks?

Because the E8 and E8-PRM algorithms operate over explicit graphs
and roadmaps, they have the freedom to evaluate edges in any order.
In contrast, search algorithms over implicit graphs must evaluate
vertices via e.g. the graph’s Successors(v) function. This freedom
may allow intelligent alternating or bisection approaches to reduce
average-case planning cost.

Since E8 operates on graphs, it is constrained to evaluating entire
edges, one at a time. On the other hand, the E8-PRM roadmap algo-
rithm has the luxury of evaluating individual configurations at any
point on the path; the Lazy PRM algorithm, for example, reported
promising results by performing a bisection collision check on the
entire path.

This question serves to identify the best-performing path evalu-
ation strategies during testing on Herb and Chimp manipuation
tasks.

Q6 How does the extent of disclosed multi-set structure affect planner
performance on multi-step problems?

The preliminary Herb experimental results reported in Table 2.2
evaluate the Multi-Set PRM’s performance with different combina-
tions of multi-set structure is provided to the planner. The purpose
of this question is to extend this analysis to a broader set of manip-
ulation tasks which exploit other types of multi-set structure, such
as those listed in Section 2.3 in order to identify particular types of
structure which yield the most promising performance.
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Q7 How does the amount of inter-step coupling affect the merit of in-
terleaving planning and execution?

As discussed in the introduction, a large amount of coupling between
tasks – what we loosely define as the extent to which early choices
affect the performance of later portions of the task – motivates longer
planning horizons. The importance of considering this coupling is
motivated by the performance of the planning system used on the
Chimp robot at the DRC Trials competition 3, which often failed to 3 C. Dellin, K. Strabala, G. C. Haynes,

D. Stager, and S. Srinivasa. Guided
manipulation planning at the DARPA
Robotics Challenge trials. In 2014
International Symposium on Experimental
Robotics (ISER 2014), June 2014

find solutions to multi-step tasks because it committed too early.
We hypothesize that highly coupled tasks will favor approaches

such as Proteus (Chapter 2.6) that wait to find a full task plan be-
fore beginning execution, while less coupled tasks will favor inter-
leaved approaches such as Hierarchical Task and Motion Planning in
the Now 4. The purpose of this question is to validate this hypothesis 4 L. P. Kaelbling and T. Lozano-Pérez.

Hierarchical task and motion planning
in the now. In Robotics and Automa-
tion (ICRA), 2011 IEEE International
Conference on, pages 1470–1477, May
2011

through experimental evaluation on Herb and Chimp.

Q8 How does the Proteus task planner compare experimentally to base-
line approaches on HERB and CHIMP?

This question serves to evaluate the full task performance of the
proposed approach in comparison to state-of-the-art baseline ap-
proaches. In order to evaluate the efficacy of the approach, this chap-
ter details a set of experiments on multiple robot systems both in
simulation and on real hardware.

Here, we describe the test platforms, software, metrics, control
variables, and baseline approaches that are used in the experimental
evaluation.

HERB: The Home Exploring Robot Butler. The HERB robot [32]
is human-scale mobile manipulator designed to assist in home en-
vironments. It has two seven-degree-of-freedom Barrett WAM arms
mounted on a Segway RMP base. It includes a BLAH KWh battery
and has three onboard rack-mount computers.

CHIMP: the CMU Highly Intelligent Mobile Platform. CHIMP
[33] is a disaster response robot built by NREC at CMU for the Darpa
Robotics Challenge. It is a tracked mobile manipulation robot con-
sisting of four limbs comprising 26 limb degrees of freedom. It has
Robotiq adaptive 3-finger grippers.

OpenRAVE Simulation Environment. We use the OpenRAVE [6]
simulation environment for planning and collision checking. It im-
plements kinematics, robot models, and interfaces to several collision
checkers. When reporting planning effort, we present both total time
and energy used, as well as number of collision checks performed for
comparison to other checkers. See the section on metrics below.

Open Motion Planning Library. We use the Open Motion Plan-
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ning Library (OMPL) planning framework [34] to implement our
planners and for baseline approaches which we compare against.

Metrics. Our primary metric is total task effort exerted to accom-
plish the task. For each run of our algorithms, we record this effort as
measured in (a) time, in seconds, and (b) energy, in Joules. In order
to present these data as fairly as possible, we record the split between
planning and execution effort for each plan. We also report the dif-
ference between expected and actual execution effort for the solution
path that may result from an approximate execution effort model (see
Chapter 2.2).

To enable comparisons to other robots and collision checkers, we
also report number of collision checks as a proxy for collision check-
ing effort. We also report the number of triangles in each collision
model.

While our approach terminates automatically given an the input λ

parameter between planning and execution effort, we also compare
against anytime approaches that return multiple improving solutions
over time. We present plots of all of these results for comparison,
and also report the data points that result from several a-priori time
budgets.

Baseline Approaches. We propose to test our task planner against
a suite of state-of-the-art approaches, including:

• Hierarchical task and motion planning in the now [13]. Note that
we compare against HPN both interleaved and non-interleaved.

• The seqeutial task planner used by by the CMU team at the Darpa
Robotics Challenge [3], based on the Constrained Bi-Directional
RRT 5. 5 D. Berenson, S. Srinivasa, D. Ferguson,

and J. Kuffner. Manipulation planning
on constraint manifolds. In Robotics
and Automation (ICRA), 2011 IEEE
International Conference on, May 2009

• Other hybrid symbolic/geometric planners.

For a fair comparison, we also select parameters for other approaches
using a set of testing problems.

3.2 Timeline

See Table 3.1 for the timeline.
I’m not sure if integration of my OMPL planner is in the best

interests of the DRC project. Will know more about this after the
March 2015 DRC testbed meeting. In any case, I’d like to test against
Trials data (and perhaps Finals data if it’s available).

3.3 Open-Source Software

I propose to release the following open-source software packages as
part of my thesis deliverables:
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Topic Section Questions Deadline

Guided Manipulation Planning at the DRC Trials [3] February 2014 (ISER) (completed)

Comprehensive Multi-Root Planning [4] 2.5 October 2014 (ICRA) (completed)

Reduce, Reuse, Recycle: Multi-Set Planning [5] 2.3, 2.4 Q1, Q2 January 2015 (RSS) (in submission)

Proposal March 2015

Multi-Set Planning for the DRC 2.4, 2.6 Q5, Q7, Q8 June 2015 (Humanoids)

HERB Experiments 2.4, 2.6 Q5, Q6, Q8 July-August 2015

The E8-PRM: Optimizing Total Task Cost 2.1, 2.2 Q1, Q3, Q4 September 2015 (AAAI)

Thesis Writing September-November 2015

Bored Robots: Hypothesized Conservative Volumes October 2015 (ICRA)

Defense December 2015

Table 3.1: Proposed Timeline.
• The E8-PRM (OMPL).

• The multi-set decomposer (OpenRAVE+OMPL).

• The Proteus task planner.
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